Package index
-
calc_inla_vi()
- Calculate variable importance in INLA via simulation
-
calc_pi_nb_analytic()
- Estimate glm.nb prediction interval analytically
-
create_counterfactual_inla()
- Create counterfactual data of variables from INLA model
-
create_demo_preds()
- Simulate a data.frame prediction interval to use in tests
-
create_pridec_quarto()
- Function to create quarto doc from model outputs
-
demo_malaria
- Demo malaria datasets
-
demo_polygon
- Demo malaria dataset polygon
-
ensemble_forecast()
- Fit an ensemble forecast
-
eval_performance()
- Evaluate performance on a cv_set
-
fill_seasonal()
- Fill in missing data via seasonally decomposed imputation
-
fit_arima()
- Fit an ARIMAX model to a cv_set
-
fit_arima_OneOrgUnit()
- Fit an ARIMAX model to one orgUnit
-
fit_glm_nb()
- Fit a negative binomial GLM to a cv_set
-
fit_inla()
- Fit an INLA model to one cv_set and get prediction intervals
-
fit_naive()
- Fit a naive model to a cv_set
-
fit_ranger()
- Fit a ranger Random Forest model to a cv_set
-
get_arima_pi()
- Internal function for estimating prediction intervals from ARIMAX model
-
get_cv_subsets()
- Internal function to format cv_set for analysis
-
get_inla_pi()
- Function to calculate and format posterior prediction distributions from INLA using random error trick
-
get_inla_pi_sample()
- Function to calculate and format posterior prediction distributions from INLA via posterior sampling
-
get_wis()
- Calculate Weighted Interval Score
-
inv_variables_arima()
- Investigate variables from ARIMAX model
-
inv_variables_glm_nb()
- Estimate variable importance and counter-factual plots of a glm.nb model
-
inv_variables_inla()
- Estimate variable importance and partial dependence plots of a INLA model
-
inv_variables_ranger()
- Estimate variable importance and partial dependence plots of a ranger model
-
plot_counterfactual()
- Plot multiple counterfactual plots from the list of cf_data using ggplot
-
plot_counterfactual_one()
- Plot one counterfactual plot from models using ggplot
-
plot_predictions()
- Plot predictions and PI ribbon with ggplot2
-
prep_data()
- Prepare case data and predictor variables for forecast models
-
retry_arima()
- Internal function to iteratively fit an ARIMAX model
-
run_inla_config()
- Configuration for an INLA model An internal function to run a configured INLA model
-
sample_fixed_posteriors()
- Sample from fixed-effect posteriors
-
sample_preds()
- Utility function to get weighted means of predictions
-
split_cv_forecast()
- Create data to use for forecast
-
split_cv_rolling()
- Create cv folds within a dataset using rolling origin method
-
split_stratified()
- Split the dataset into a training and testing set
-
train_models()
- Run full train_model workflow using multiple modeling approaches
-
tune_ranger()
- Tune a ranger random forest model