Skip to contents

All functions

calc_inla_vi()
Calculate variable importance in INLA via simulation
calc_pi_nb_analytic()
Estimate glm.nb prediction interval analytically
create_counterfactual_inla()
Create counterfactual data of variables from INLA model
create_demo_preds()
Simulate a data.frame prediction interval to use in tests
create_pridec_quarto()
Function to create quarto doc from model outputs
demo_malaria
Demo malaria datasets
demo_polygon
Demo malaria dataset polygon
ensemble_forecast()
Fit an ensemble forecast
eval_performance()
Evaluate performance on a cv_set
fill_seasonal()
Fill in missing data via seasonally decomposed imputation
fit_arima()
Fit an ARIMAX model to a cv_set
fit_arima_OneOrgUnit()
Fit an ARIMAX model to one orgUnit
fit_glm_nb()
Fit a negative binomial GLM to a cv_set
fit_inla()
Fit an INLA model to one cv_set and get prediction intervals
fit_naive()
Fit a naive model to a cv_set
fit_ranger()
Fit a ranger Random Forest model to a cv_set
get_arima_pi()
Internal function for estimating prediction intervals from ARIMAX model
get_cv_subsets()
Internal function to format cv_set for analysis
get_inla_pi()
Function to calculate and format posterior prediction distributions from INLA using random error trick
get_inla_pi_sample()
Function to calculate and format posterior prediction distributions from INLA via posterior sampling
get_wis()
Calculate Weighted Interval Score
inv_variables_arima()
Investigate variables from ARIMAX model
inv_variables_glm_nb()
Estimate variable importance and counter-factual plots of a glm.nb model
inv_variables_inla()
Estimate variable importance and partial dependence plots of a INLA model
inv_variables_ranger()
Estimate variable importance and partial dependence plots of a ranger model
plot_counterfactual()
Plot multiple counterfactual plots from the list of cf_data using ggplot
plot_counterfactual_one()
Plot one counterfactual plot from models using ggplot
plot_predictions()
Plot predictions and PI ribbon with ggplot2
prep_data()
Prepare case data and predictor variables for forecast models
retry_arima()
Internal function to iteratively fit an ARIMAX model
run_inla_config()
Configuration for an INLA model An internal function to run a configured INLA model
sample_fixed_posteriors()
Sample from fixed-effect posteriors
sample_preds()
Utility function to get weighted means of predictions
split_cv_forecast()
Create data to use for forecast
split_cv_rolling()
Create cv folds within a dataset using rolling origin method
split_stratified()
Split the dataset into a training and testing set
train_models()
Run full train_model workflow using multiple modeling approaches
tune_ranger()
Tune a ranger random forest model