Fit an INLA model to one cv_set and get prediction intervals
fit_inla.Rd
Fit an INLA model to one cv_set and get prediction intervals
Usage
fit_inla(
cv_set,
y_var,
pred_vars,
id_vars,
reff_var = NULL,
hyper_priors = list(prec.unstruct = c(1, 5e-04), prec.spatial = c(1, 5e-04),
prec.timerw1 = c(1, 0.01)),
return_model = FALSE,
quantile_levels = c(0.01, 0.025, seq(0.05, 0.95, by = 0.05), 0.975, 0.99),
sample_pi = FALSE,
W_orgUnit = NULL,
verbose = FALSE
)
Arguments
- cv_set
list object containing analysis and assessment data.frames
- y_var
string name of column of observed values
- pred_vars
vector string of predictor variables to use in model
- id_vars
names of columns used as keys/ids in data.frames
- reff_var
string or formula for random effects
- hyper_priors
priors for spatial and temporal random effects
- return_model
whether or not to return the INLA model in addition to predictions
- quantile_levels
quantile levels to use when predicted via quantile regression. Default = c(0.01,0.025, seq(0.05,0.95, by = 0.05), 0.975, 0.99)
- sample_pi
whether to estimate the prediction intervals by sampling the posterior. Default (FALSE) uses a trick to put all error into an iid random effect.
- W_orgUnit
graph of orgUnit to use in spatial structure. If NULL (default), will not fit a spatial structure.
- verbose
whether to run the INLA model verbosely. Default = FALSE