Run full train_model workflow using multiple modeling approaches
train_models.Rd
Run full train_model workflow using multiple modeling approaches
Usage
train_models(
prep_output,
models,
y_var,
pred_vars,
id_vars = c("orgUnit", "date"),
results_dir = NULL,
tune = NULL,
model_configs = NULL,
create_report = FALSE,
report_configs = NULL
)
Arguments
- prep_output
output of prep_data
- models
vector of models to fit. Options: naive, arimax, glm_nb, ranger, inla
- y_var
character. name of variable to predict
- pred_vars
character vector of predictor variables. Not all will be used in all models
- results_dir
directory to save model results and quarto document in. If NULL, temporary directory will be used
- tune
string vector containing names of models to tune. Options = ranger
- model_configs
Optional list of configurations for each model. Name of element in list should match model name. See ensemble_forecast for more info.
- create_report
Whether to create the HTML report. Default = FALSE
- report_configs
Optional configurations for quarto_report provided as a named list. Options are: html_filename, doc_title, lang